Data Analysis Practice

Voltage (V) X - axis	Current (A) 4 - a Xis	
0	0	
1.01	1.00	
1.93	3.87	
3.13	10.02	
4.11	16.30	Real X
5.07	26.12	

Use Logger Pro to graph this data. Sketch the graph below:

Current (A)

. Voltage (V)

The independent variable is: Corrent The independent variable is: Voltage

The algebraic representation is: $y = A \times 2$

The proportionality relationship is:

y is proportional to x2

) If voltage is doubled, current is: increased by factor of 4 If voltage is halved, current is: decreased by As voltage increases, current A. Factor of 4 Solve for the units of the constant:

A = A' V2 Amps/Valte2

y= 4.Ax2 ~ y increases by 4

Double x

y= A(2x)2

Solve for the units of the constant:

4= Ax2

Current is proportional to voltage?

Surface Area (m^2) X - QXIS	Velocity (m/s) y - axis
0.55	1.45
1.05	0.83
1.53	0.55
2.04	0.42
2.56	0.33
3.03	0.29

Use Logger Pro to graph this data. Sketch the graph below:

Surface Area (m²)

The dependent variable is: velocity

The independent variable is: Surface area

The algebraic representation is: $V = A \left(\frac{1}{5}\right)$

The proportionality relationship is:

(2)

Velocity is proportional to

If surface area is doubled, velocity is: halved If surface area is halved, velocity is: doubled As voltage increases, current... Solve for the units of the constant: $y = A(\frac{1}{x})$ $A = (\frac{1}{y})(m^2)$

 $y = A(\frac{1}{2})$

y= A (1)= 1. A(1)

double x

V= A (=) A = m3 VS=A